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Abstract: Recently, numerical analysis has been used effectively for estimating
the lifetime distribution parameters in the literature. Therefore, the main
objective of this paper is to introduce a new numerical estimation technique,
such as Adams’s method. This method has been used for estimating the Weibull
model parameters and comparing them to the Bayes estimations based on
different priors via Monte Carlo simulations. The simulation results indicated
that Adams’s method is more efficient than Bayes’ method. Finally, two real
data sets have been analyzed for illustrations and to compare the proposed
methods based on the generalized progressive hybrid censoring data.
Keywords: Bayesian estimation; Characteristic priors; Informative prior;
Kernel prior.

INTRODUCTION

In statistical inference and reliability, numerical analysis has been used for
estimating the distribution parameters using the Runge-Kutta method in
the literature, see [20, 21, 22]. Thus, the main objective of this work is to
introduce a new estimation method using a numerical technique such as
Adams's method for estimating the distribution parameters and compare
to the Bayesian estimates based on the characteristic, informative gamma,
and kernel priors.

To illustrate that, we employed the proposed method on one of the
most employed lifetime distributions and reliability theories, the Weibull
distribution, for its flexibility in describing the lifetime variables of constant
hazard rate as well as non-constant hazard rate, and it has been shown to
be useful for modelling and analyzing lifetime data in medical, biological,
and engineering sciences. Moreover, it is one of the models that has two
well-known distributions as special cases, such as the exponential and
Rayleigh distributions, and it has different priors for the parameters that
have been extensively studied in the literature.

Many authors used the informative prior for the Weibull model
parameters, among them, [24] derived an informative conjugate prior by
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assuming each of the parameters has a gamma distribution. [5] and [6]
proposed a different prior based on the prior information on the reliability
level or the hazard rate at a given time and converted it to information
about the model parameters. [2] derived the estimations of the parameters
based on the classical and Bayesian approaches. [13] presented the reliability
and quantile analysis for the Weibull distribution. [3] derived the maximum
likelihood estimation (MLE) for the Weibull model parameters based on
complete and censored samples. [26] derived the MLEs for the Weibull
model parameters based on type-II progressively censored samples. [25]
applied the MLE and Bayes methods for estimating the Weibull parameters
based on censored samples, [27] derived the parameter estimation based
on progressively censored data, and [19] derived the empirical Bayes
inference for the Weibull Model parameters. For a continuation of these
efforts, the purpose of this paper is to derive the point estimations for the
parameters based on generalized progressive hybrid censored samples using
Adams’s method and compare to the Bayes’ method when the underlying
distribution is the two-parameter Weibull distribution, which has a
probability density function and cumulative distribution function as given
respectively by:

f (x) = ��x �–1 exp(–�x�), x > 0, (1.1)

F (x) = 1 – exp(–�x�), x > 0, (1.2)
�, � > 0 are the shape and scale parameters respectively.

In statistical analysis, the progressive censoring is the familiar schemes
in both industrial life testing applications and clinical trials that allows the
removal of surviving experimental units before the termination of the test.
However, the disadvantages of the progressive type-II censoring scheme
are that the time of the experiment can be very long if the units are highly
reliable. experiments are often terminated before all units on the test fail
due to cost or time considerations. Therefore, [13] recently proposed a
censoring scheme called the Type-II progressively hybrid censoring scheme,
with the disadvantage that very few failures may occur before time point T.
To provide a guarantee of the number of failures observed as well as the
time to complete the test, [8] and [9] proposed the generalized progressive
hybrid-censoring scheme (GPHCS), which modifies the progressive hybrid
censoring scheme. It allows the experiment to continue beyond time T to
observe at least k failures if the number of failures is less than m. Thus, we
have three cases for terminating the test: The first one is if the specified
number of failures m is less than T. The second case is if T is less than m,
where J is the number of observed units at the time T. The third case is if T
is less than k.  The GPHCS algorithm can be seen in [20, 21, 22].
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Thus, given a generalized progressive hybrid censored sample, the
likelihood function for the three different cases can be written in a unified
form as follows:

*
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where RT
* is the number of surviving units that are removed at the stopping

time T * = max{Xk:m:N), min{Xm:m:N), T}}.
The GPHCS has been applied for some distributions such as the Weibull

distribution see [9], inverse Weibull distribution, see [20, 23], Exponential
distribution, see [8], and [11], Rayleigh distribution, see [7], shape-scale
family, see [21], and the generalized Weibull distribution, see [22].

2. ESTIMATION METHODS

Adams’s Method

Theoretically, it is known that the traditional log likelihood function,
H(x, �), depends on the unknown parameter � = (�, �) and the data X. Thus,

the MLE �̂  of � is the solution of the stationary equation  
( | )

0
H X� �

�
��

.

Applying the implicit function theorem to the stationary equation with
considering all partial derivatives as well as the total derivatives are assumed
to be evaluated at some known value of  � = �* or at any initial value  �0. By
taking the X-derivatives to the stationary equation we obtain

*
*
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Solving (2.4) we obtain the first derivative of �* with respect to X at  � =
�* as:
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Thus, we can write (2.5) as
*

*( , ),
d

f x
dx
�
� �  at � = �*, (2.6)
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where f (x, �*) = 
*
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The equation (2.6) is first order ordinary differential equation in �*.  A
numerical method such as Adams's method can be used for finding the
approximate solution given a trial set of parameter values and initial
conditions, a procedure which is referred by engineers as simulations. If
the initial conditions are unavailable, they must be appended to the
parameter �̂  as quantities with respect to which the fit is optimized.  Thus,
Adams recurrence solution for (2.6) can be obtained as:

�*
N+1 = �*

N + h[23f (xN , �
*) – 16f (xN–1, �

*) + 5f (xN–2, �
*)]/12,

for N = 0, 1, 2, ..., (2.7)
Here h is a small known value (say, 1E – 02) and �*

0 = �0, is the initial
value for �*.

The iterative process is continued using (2.7) until two consecutive
numerical solutions are almost the same, that is if |�*

N+1 – �*
N| < 1E – 05.   for

N = 0, 1, 2, 3, ... .
Using � and � instead of � in (2.7) we get the Adams estimator for each

parameter, respectively.

2.2 BAYES METHOD

In this section, the Bayes estimations will be derived based on three different
priors as follows:

I. Informative Prior

We consider the unknown parameters � and � have independent gamma
prior distributions with joint probability density function defined as the
following:

g(�, �) ���a–1 �c–1 e–d �–b�) (2.8)
The hyper-parameter a, b, c and d are assumed to be known and positives

to reflect the prior belief about the unknown parameters.

II. Kernel Prior

For deriving the kernel prior, we introduce the bivariate kernel density
estimator for the unknown probability density function g(�, �) with support
on (0, �), which is defined as follows:

1
1 2 1 2

ˆˆ1ˆ ( , ) , ,
N i i
i

g K
Nh h h h�

� �� �� � ��
� � � � �

� �
� (2.9)
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hi , i = 1, 2  are called the bandwidths or smoothing parameters, which are
chosen such that hi � 0 and Nhi � as N ���, where N is the sample size.
The influence of the smoothing parameter h is critical because it determines
the amount of smoothing. However, the optimal choice for hi, which
minimizes the mean squared errors is given by hi =1.06Si N

–0.2, where  Si the
sample standard deviation. The optimal choice for the kernel function
K(., .) can be used as the bivariate standard normal distribution for the
parameters � and �. Based on the properties of the MLEs of the parameters,
which are converging in probability with the original parameters, the kernel
prior estimate can be derived. It is worthwhile to mention that this kernel
prior has been used for some distributions, see [1] and [16-18].

III. Characteristic Prior

The characteristic function CF is the Fourier transform of the cumulative
distribution function CDF, and hence there is a one-to-one correspondence
between the CF and the CDF. Thus, the CF is fully characterizing the
distribution of the underlying random variable. Since the CF can be
estimated using the empirical characteristic function ECF, which retains all
the information in the sample, it plays an increasing and important role in
econometrics and finance, see [10]. Thus, based on the CF for two random
variables and its inversion formula, the probability density function for the
characteristic prior for the parameters � and � has been derived in the
Appendix A as follows:

� �2 1

1 1ˆ( , ) .
ˆ4 ˆ( )

n

i
i i

h
n a

�
� � �

� �� � ��
� (2.10)

The general joint prior using (2.8), (2.9) and (2.10) can be written as
follows:

Q(�, �) = g(�, �)h(�, �)q(�,��)
Thus, based on Bayes’ theorem the posterior density for the unknown

parameters � and � can be derived using the likelihood function of the
GPHCS (3) and the general joint prior as follows:

f (�, �|X ) = KQ(�, �)L(X; �, �)

1 2 21 1 1
1

ˆ ˆ ˆ( ) ( ) ( ) ( ) [ ( 1) ln( )].
Np p l l N a N c

ii
Kg g q q exp b x� � � �

�
� � � � � � � �� � � � �

� �*

1
[ ( 1) .×

N

i i Ti
exp d R x R T� �

�
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(i) For the informative gamma prior p1 = p2 = 0,  l1 = l2 = 0, as in (2.8).
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(ii) For the kernel prior p1 = p2 = 1  and a = c = 1,  b = d = 0, as in (2.9).
(iii) For the characteristic prior p1 = p2 = 0,  l1 = l2 = 1 and a = c = 1, b = d

= 0, as in (2.10).
The marginal posterior densities for the parameters based on the kernel

and the characteristics priors cannot be solved analytically, but for the
informative gamma prior can be evaluated as
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K is the normalizing constant and can be derived as follows:
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3. SIMULATION STUDY

The purpose of the simulation study is to compare the performance of the
estimates using Adams and Bayes methods based on the informative
gamma, the kernel and the characteristic priors, through two criteria the
average bias (AVB) and the mean squared error (MSE) as given by:

1

1 ˆ ,
L

ii
AVB

L �
� � � ��  and 2

1
ˆ( ) /

L
ii

MSE L
�

� � � ��
�̂  is the estimate of � and L is the number of replications.
In our simulation study, we choose different values for the

hyperparameters of � and � say: (a, b, c, d) = (5, 3, 5, 3) and two values for
the parameter � = (1, 2), and two values for the parameter � = (2, 3)
respectively.

Using the above parameter values for generating different samples from
the Weibull distribution with sizes n = 20, 40 and 60 to represent small,
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moderate and large sizes. To assess the performance of the parameter
estimates using Adams and Bayes methods, the AVB and MSE for each one
were calculated using 1000 replications.

From the simulation results in Tables [3-6], some of the points are quite
clear based on these estimates and the others have been summarized in the
following main points:

1. It is clear that the point estimates for the parameters based on
Adams's method have the smallest estimated AVB and MSE values
as compared with the estimates based on Bayes' method using three
different priors.

2. In general, for the parameters � and �, the estimated MSE values
based on the kernel prior are often less than the estimated based
on the informative gamma prior and almost close to the ones for
Adams's method.

3. The estimated MSE values increase as the value of � increases and
decrease as the value of � increases.

4. The estimated MSE values decrease as the hyperparameters of the
informative prior decrease.

The estimated MSE values for the parameters decrease as the
sample sizes and the termination time of the experiment T increase
as expected.

As a conclusion, it appears that the point estimates based on Adams's
method compete and outperform Bayes’ method using the different priors.

4. REAL DATA ANALYSIS

In this section, we studied two real datasets to study the performance of the
proposed methods on the Weibull model, which is the most desirable and
widely used lifetime distribution. This distribution has been used in many
applications in various fields and in new areas such as biomedical science
and survival analysis to describe the lifetime of specific mortality and failure
rates. Hence, we have fitted these datasets using some goodness of fit tests
such as the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Chi-
Square (CH2) tests for a significance level equals to 0.05.

4.1 Ball Bearings Data Application

In this section we consider one real dataset from [14] and [15]. The data
arose in tests on the endurance of deep groove ball bearings. The data are
the number of million revolutions before failure for each of the 23 ball
bearings in the life test and they are as follows:
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17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40.

Figure 1a indicates these data are good fit for the Weibull distribution.
Also, in Table 1, we can see the calculated values for the test statistics are
less than the critical values and the power of the tests are greater than the
significance level 0.05.

We noticed that Adams and Bayes estimates for ? are close to 2.5, which
indicates that the above dataset is moderately bell shaped, which means
slightly decreasing the number of revolutions of the ball bearings before
failure, see Figure (1b). Also, Adams and Bayes estimates for ? are almost
close to zero, which ensures this dataset is almost symmetric even with
increasing time. Thus, this dataset ensures the strength of the ball bearings.

Fig. 1: (a) The Empirical CDF and the fitted CDF for the ball bearings data.
(b) The Histogram and the fitted PDF for the ball bearings data.

4.2 Vinyl Chloride Data Application

As vinyl chloride is a known human carcinogen, exposure to this compound
should be avoided as far as practicable, and levels should be kept as low as
technically feasible. It is known that a concentration of vinyl chloride in
drinking-water of 0.5 mg/litre was calculated to be associated with an excess
risk of liver and brain tumors for exposure beginning in adulthood, and it
would double the cancer risk for continuous exposure from birth. Therefore,
we consider the dataset used by [4], which represents 34 data points in mg/
L from the vinyl chloride that was obtained from clean upgrade monitoring
wells, as:

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6,  0.9, 0.4, 2.0, 0.5, 5.3,
3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.
We found the Weibull model to be a good fit for this dataset, as shown

in Table 1 and Figure (1a). For studying the concentration of vinyl chloride
in the water of these wells based on this dataset, we find the estimates for
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the parameters, which represent the scale and shape of the concentration,
using our model to determine the average concentration in the water. We
noticed that Adams and Bayes estimates for � are close to 1.3, which indicates
that the above dataset is moderately right-skewed, which means the
concentration decreases with increasing time, see Figure (1 b). Also, Adams
and Bayes estimates for � are close to 0.5, which ensures the dataset is right-
skewed and the vinyl chloride concentration will decrease with increasing
time, and therefore monitoring these wells is very significant.

Fig. 2: (a) The Empirical CDF and the fitted CDF for the Vinyl Chloride data.
(b) The Histogram and the fitted PDF for the Vinyl Chloride data.

Table 1: The critical and calculated values for the K-S, A-D and CH2 tests  and their
powers (p- values).

Data The Tests Critical Calculated The �̂ �̂
Value Value P-values

The Ball Bearing K-S 0.8541 0.7239 0.2080 2.1015 9.5E-05
Data, N = 23 A-D 0.7468 0.3283 0.5733

CH2 13.2922 2.9031 0.6098

The Vinyl Chloride K-S 0.8624 0.5355 0.6525 1.0102 0.5263
Data, N = 34 A-D 0.7504 0.2826 0.6708

CH2 15.428 4.9912 0.4474

The results in Table 1 indicate that the Weibull model is a good fit for
these datasets.The power of the tests is greater than the significance level
of the tests, as shown in the Figures (1a, 2a) and the calculated values of
the goodness of fit tests are smaller than the critical values of the tests.
Thus, the results in Table 2 indicated that the estimated MSE values based
on Adams's  method are smaller than those based on Bayes' method for
large values of  T when considering the MLE values as the true values of
the parameters. Thus, the results of these data sets ensure the simulation
results.
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Table 2: The estimate and the root mean squared errors (MSEs) for the parameters 
and  based  on  the  Picard and Bayes methods  using gamma and Kernel priors

based on  the GHPCS: for m = n/2, and k = m/2  with a = 5, b = 3, c = 5, d = 3

Adams  Estamite Gamma Prior     Kernel  Prior
Samples T Parameters Estimate MSE Estimate MSE Estimate MSE

The Ball 50 2.0586 0.00179 2.4574 0.0432 2.2743 0.01236
Bearings 0.00765 5.7E-05 0.06048 0.003645 0.05117 0.002609
Data, 120 2.0585 0.00180 2.5473 0.0432 2.3532 0.0362
N = 23 0.005528 2.9E-05 0.0625 0.00389 0.05082 0.002573

The vinyl 0.75 0.9769 0.001106 1.3192 0.0956 0.8982 0.01254
Chloride
Data, 1.25 0.9767 0.001122 1.3326 0.1039 0.9007 0.01204
N = 34 0.4810 0.002044 0.3568 0.02873 0.3062 0.04842

CONCLUSIONS

It is known that Bayes estimation method based on the informative gamma
prior is more efficient than most of the estimation methods in reliability
theory despite its subjectivity to information other than data. Thus, in this
work, we transformed the stationary equation into a differential equation,
which can be solved numerically with any iteration techniques such as
Adams's method. We found that, the parameter estimates based on Adams's
method are more efficient than those based on Bayes' method using the
three different priors such as the informative gamma, characteristic and
kernel priors based on the generalized progressive hybrid censoring scheme.
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Table 3: The Average bias (ABS) and the Mean Squared  Errors (MSEs) in
parentheses  for the parameter  using Adams and Bayes methods

with m = (n/2 and 3n/4) and k = (m/2 and 3m/4) at T = 0.75

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

20 10 5 1 2 0.0572 (0.0052) 0.1203 (0.0147) 0.2062 (0.0760) 0.1507 (0.0363)
3 0.0741 (0.0090) 0.1189 (0.0144) 0.1501 (0.0349) 0.1314 (0.0264)

2 2 0.4281 (0.0154) 0.2568 (0.0662) 0.4145 (0.3100) 0.2109 (0.0701)
3 0.2490 (0.2333) 0.2638 (0.0697) 0.2945 (0.1411) 0.2196 (0.0747)

8 1 2 0.0600 (0.0057) 0.1208 (0.0149) 0.2015 (0.0714) 0.1499 (0.0355)
3 0.0688 (0.0069) 0.1192 (0.0145) 0.1461 (0.0323) 0.1292 (0.0250)

2 2 0.2154 (0.0590) 0.2550 (0.0654) 0.4045 (0.2946) 0.2086 (0.0666)
3 0.2195 (0.0653) 0.2640 (0.0698) 0.2874 (0.1327) 0.2107 (0.0672)

15 8 1 2 0.0584 (0.0056) 0.1211 (0.0149) 0.2099 (0.0819) 0.1534 (0.0384)
3 0.0635 (0.0057) 0.1213 (0.0149) 0.1454 (0.0333) 0.1283 (0.0254)

2 2 0.2115 (0.0609) 0.2539 (0.0651) 0.4481 (0.3570) 0.2162 (0.0710)
3 0.2213 (0.0747) 0.2644 (0.0700) 0.2905 (0.1303) 0.2109 (0.0676)

11 1 2 0.0538 (0.0044) 0.1231 (0.0154) 0.1918 (0.0658) 0.1377 (0.0308)
3 0.0629 (0.0056) 0.1230 (0.0154) 0.1433 (0.0316) 0.1273 (0.0246)

2 2 0.1995 (0.0493) 0.2571 (0.0704) 0.4251 (0.3359) 0.2044 (0.0653)
3 0.2081 (0.0515) 0.2633 (0.0696) 0.2866 (0.1355) 0.2038 (0.0632)

40 20 10 1 2 0.0595 (0.0047) 0.1088 (0.0121) 0.1476 (0.0370) 0.1136 (0.0211)
3 0.0681 (0.0056) 0.1114 (0.0125) 0.1138 (0.0193) 0.1022 (0.0155)

2 2 0.2139 (0.0523) 0.2463 (0.0615) 0.3082 (0.1589) 0.1830 (0.0519)
3 0.2243 (0.0568) 0.2588 (0.0671) 0.2238 (0.0767) 0.1857 (0.0527)

15 1 2 0.0586 (0.0045) 0.1094 (0.0122) 0.1461 (0.0339) 0.1110 (0.0191)
3 0.0668 (0.0053) 0.1113 (0.0125) 0.1107 (0.0189) 0.0993 (0.0151)

2 2 0.2107 (0.0508) 0.2448 (0.0610) 0.3177 (0.1596) 0.1770 (0.0500)
3 0.2213 (0.0541) 0.2582 (0.0669) 0.2164 (0.0720) 0.1831 (0.0500)

30 15 1 2 0.0568 (0.0041) 0.1092 (0.0122) 0.1439 (0.0354) 0.1084 (0.0191)
3 0.0655 (0.0052) 0.1127 (0.0128) 0.1088 (0.0181) 0.0985 (0.0148)

2 2 0.2057 (0.0482) 0.2436 (0.0607) 0.3357 (0.1906) 0.1840 (0.0527)
3 0.2148 (0.0507) 0.2577 (0.0667) 0.2139 (0.0726) 0.1764 (0.0481)

23 1 2 0.0524 (0.0035) 0.1105 (0.0127) 0.1366 (0.0319) 0.1054 (0.0182)
3 0.0615 (0.0045) 0.1137 (0.0131) 0.1013 (0.0158) 0.0947 (0.0136)

2 2 0.1914 (0.0419) 0.2475 (0.0645) 0.2990 (0.1517) 0.1763 (0.0475)
3 0.2080 (0.0472) 0.2544 (0.0655) 0.1982 (0.0628) 0.1627 (0.0410)

60 30 15 1 2 0.0551 (0.0036) 0.1024 (0.0109) 0.1189 (0.0236) 0.0912 (0.0130)
3 0.0632 (0.0045) 0.1071 (0.0116) 0.0919 (0.0130) 0.0859 (0.0110)

2 2 0.2060 (0.0456) 0.2382 (0.0586) 0.2557 (0.1106) 0.1569 (0.0379)
3 0.2167 (0.0503) 0.2543 (0.0649) 0.1902 (0.0563) 0.1677 (0.0417)
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23 1 2 0.0558 (0.0036) 0.1026 (0.0109) 0.1171 (0.0224) 0.0896 (0.0125)
3 0.0630 (0.0045) 0.1070 (0.0115) 0.0936 (0.0132) 0.0869 (0.0113)

2 2 0.2096 (0.0478) 0.2393 (0.0590) 0.2647 (0.1168) 0.1684 (0.0426)
3 0.2140 (0.0486) 0.2530 (0.0644) 0.1825 (0.0512) 0.1613 (0.0388)

45 23 1 2 0.0563 (0.0038) 0.1028 (0.0110) 0.1250 (0.0250) 0.0948 (0.0140)
3 0.0645 (0.0047) 0.1070 (0.0115) 0.0957 (0.0139) 0.0884 (0.0117)

2 2 0.2087 (0.0474) 0.2389 (0.0592) 0.2698 (0.1231) 0.1636 (0.0416)
3 0.2144 (0.0490) 0.2535 (0.0646) 0.1824 (0.0511) 0.1626 (0.0393)

34 1 2 0.0512 (0.0031) 0.1018 (0.0111) 0.1170 (0.0224) 0.0885 (0.0128)
3 0.0592 (0.0040) 0.1071 (0.0116) 0.0822 (0.0106) 0.0786 (0.0097)

2 2 0.1903 (0.0394) 0.2335 (0.0594) 0.2538 (0.1067) 0.1510 (0.0352)
3 0.2104 (0.0470) 0.2471 (0.0621) 0.1749 (0.0458) 0.1539 (0.0354)

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

Table 4: The Average bias  (ABS) and the Mean Squared Errors  (MSEs) in
parentheses  for the  parameter  using Adams and Bayes methods at

T = 1.5 with m = (n/2 and 3n/4) and k = (m/2 and 3m/4)

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

20 10 5 1 2 0.0553 (0.0048) 0.1230 (0.0154) 0.2068 (0.0810) 0.1496 (0.0371)
3 0.0657 (0.0063) 0.1211 (0.0149) 0.1427 (0.0306) 0.1269 (0.0241)

2 2 0.2010 (0.0515) 0.2520 (0.0646) 0.4633 (0.3775) 0.2084 (0.0679)
3 0.2215 (0.0630) 0.2637 (0.0697) 0.2891 (0.1349) 0.2122 (0.0695)

8 1 2 0.0541 (0.0045) 0.1224 (0.0152) 0.1954 (0.0680) 0.1394 (0.0315)
3 0.0629 (0.0056) 0.1223 (0.0152) 0.1419 (0.0295) 0.1262 (0.0232)

2 2 0.2111 (0.0597) 0.2541 (0.0653) 0.4410 (0.3468) 0.2130 (0.0702)
3 0.2145 (0.0567) 0.2634 (0.0695) 0.2758 (0.1224) 0.2014 (0.0624)

15 8 1 2 0.0524 (0.0043) 0.1234 (0.0155) 0.1959 (0.0701) 0.1416 (0.0330)
3 0.0626 (0.0055) 0.1224 (0.0152) 0.1441 (0.0316) 0.1281 (0.0247)

2 2 0.2097 (0.0602) 0.2556 (0.0670) 0.4295 (0.3431) 0.2088 (0.0677)
3 0.2203 (0.0601) 0.2639 (0.0698) 0.2797 (0.1272) 0.2097 (0.0678)

11 1 2 0.0516 (0.0043) 0.1244 (0.0158) 0.2005 (0.0724) 0.1438 (0.0340)
3 0.0601 (0.0049) 0.1227 (0.0153) 0.1362 (0.0285) 0.1210 (0.0222)

2 2 0.1952 (0.0480) 0.2570 (0.0683) 0.4395 (0.3586) 0.2107 (0.0672)
3 0.2153 (0.0569) 0.2630 (0.0694) 0.2874 (0.1350) 0.2077 (0.0661)

40 20 10 1 2 0.0542 (0.0037) 0.1099 (0.0124) 0.1438 (0.0343) 0.1079 (0.0184)
3 0.0625 (0.0046) 0.1129 (0.0129) 0.1058 (0.0171) 0.0978 (0.0144)

2 2 0.2035 (0.0468) 0.2450 (0.0617) 0.3081 (0.1594) 0.1796 (0.0481)
3 0.2124 (0.0502) 0.2565 (0.0662) 0.2054 (0.0667) 0.1694 (0.0445)
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Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

15 1 2 0.0553 (0.0039) 0.1099 (0.0124) 0.1468 (0.0353) 0.1106 (0.0193)
3 0.0633 (0.0047) 0.1132 (0.0129) 0.1043 (0.0162) 0.0963 (0.0137)

2 2 0.2044 (0.0476) 0.2453 (0.0632) 0.3066 (0.1577) 0.1756 (0.0471)
3 0.2118 (0.0486) 0.2568 (0.0663) 0.2057 (0.0642) 0.1738 (0.0442)

30 15 1 2 0.0532 (0.0036) 0.1113 (0.0130) 0.1360 (0.0321) 0.1040 (0.0178)
3 0.0621 (0.0046) 0.1135 (0.0130) 0.1033 (0.0166) 0.0963 (0.0142)

2 2 0.1953 (0.0446) 0.2430 (0.0616) 0.3159 (0.1672) 0.1751 (0.0485)
3 0.2107 (0.0491) 0.2547 (0.0657) 0.2047 (0.0694) 0.1710 (0.0446)

23 1 2 0.0501 (0.0032) 0.1112 (0.0132) 0.1386 (0.0331) 0.1056 (0.0184)
3 0.0600 (0.0043) 0.1134 (0.0130) 0.1029 (0.0164) 0.0961 (0.0142)

2 2 0.1885 (0.0403) 0.2469 (0.0643) 0.2865 (0.1382) 0.1692 (0.0440)
3 0.2080 (0.0476) 0.2530 (0.0648) 0.2065 (0.0670) 0.1699 (0.0435)

60 30 15 1 2 0.0539 (0.0034) 0.1047 (0.0125) 0.1217 (0.0251) 0.0916 (0.0139)
3 0.0601 (0.0040) 0.1074 (0.0117) 0.0855 (0.0112) 0.0815 (0.0100)

2 2 0.2015 (0.0438) 0.2353 (0.0578) 0.2456 (0.1011) 0.1479 (0.0339)
3 0.2122 (0.0474) 0.2514 (0.0638) 0.1661 (0.0432) 0.1511 (0.0351)

23 1 2 0.0542 (0.0035) 0.1027 (0.0111) 0.1169 (0.0220) 0.0891 (0.0125)
3 0.0605 (0.0041) 0.1076 (0.0117) 0.0859 (0.0112) 0.0818 (0.0100)

2 2 0.2029 (0.0449) 0.2407 (0.0608) 0.2464 (0.1035) 0.1555 (0.0373)
3 0.2121 (0.0478) 0.2484 (0.0625) 0.1786 (0.0484) 0.1591 (0.0375)

45 23 1 2 0.0499 (0.0029) 0.1038 (0.0116) 0.1101 (0.0204) 0.0872 (0.0123)
3 0.0595 (0.0040) 0.1065 (0.0116) 0.0830 (0.0106) 0.0797 (0.0097)

2 2 0.1905 (0.0397) 0.2370 (0.0593) 0.2359 (0.0914) 0.1482 (0.0343)
3 0.2088 (0.0462) 0.2457 (0.0617) 0.1770 (0.0480) 0.1555 (0.0360)

34 1 2 0.0508 (0.0030) 0.1046 (0.0118) 0.1092 (0.0202) 0.0866 (0.0120)
3 0.0591 (0.0040) 0.1061 (0.0115) 0.0830 (0.0109) 0.0792 (0.0098)

2 2 0.1866 (0.0381) 0.2376 (0.0622) 0.2296 (0.0893) 0.1461 (0.0334)
3 0.2071 (0.0458) 0.2462 (0.0623) 0.1714 (0.0472) 0.1526 (0.0352)
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Table 5: The Average bias  (ABS)  and the Mean Squared Errors  (MSEs) in
parentheses for the  parameter  using Adams and Bayes methods

with m =  (n/2 and 3n/4) and k = (m/2 and 3m/4)  at T = 0.75

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

20 10 5 1 2 0.1370 (0.0189) 0.3662 (0.1921) 0.3476 (0.1610) 0.1699 (0.0551)
3 0.3096 (0.0958) 0.7344 (0.6455) 0.7127 (0.5614) 0.5883 (0.3633)

2 2 0.2842 (0.0826) 0.3822 (0.2073) 0.4464 (0.2585) 0.1945 (0.0654)
3 0.4940 (0.2507) 0.6452 (0.5575) 0.5509 (0.3758) 0.5182 (0.2917)

8 1 2 0.1339 (0.0179) 0.3697 (0.1945) 0.3436 (0.1601) 0.1792 (0.0604)
3 0.2785 (0.0775) 0.6858 (0.5674) 0.6571 (0.4743) 0.5547 (0.3218)

2 2 0.2668 (0.0726) 0.3562 (0.1888) 0.4812 (0.2980) 0.1893 (0.0628)
3 0.4704 (0.2260) 0.6162 (0.5104) 0.4858 (0.3040) 0.4901 (0.2631)

15 8 1 2 0.1267 (0.0161) 0.3536 (0.1779) 0.3609 (0.1723) 0.1828 (0.0573)
3 0.2543 (0.0647) 0.6850 (0.5680) 0.6230 (0.4398) 0.5377 (0.3077)

2 2 0.2691 (0.0739) 0.3803 (0.2054) 0.4867 (0.3046) 0.1939 (0.0649)
3 0.4706 (0.2266) 0.6223 (0.5244) 0.4924 (0.3179) 0.4934 (0.2697)

11 1 2 0.1112 (0.0124) 0.3298 (0.1581) 0.3785 (0.1920) 0.1915 (0.0603)
3 0.2190 (0.0480) 0.5918 (0.4315) 0.5336 (0.3358) 0.4845 (0.2552)

2 2 0.2352 (0.0561) 0.3462 (0.1739) 0.5044 (0.3382) 0.2037 (0.0688)
3 0.4087 (0.1697) 0.5164 (0.3802) 0.3614 (0.1957) 0.4285 (0.2094)

40 20 10 1 2 0.1405 (0.0198) 0.3260 (0.1557) 0.3563 (0.1705) 0.1917 (0.0616)
3 0.2929 (0.0858) 0.6338 (0.4916) 0.5820 (0.3906) 0.5217 (0.2915)

2 2 0.2891 (0.0846) 0.3388 (0.1666) 0.4497 (0.2620) 0.1885 (0.0602)
3 0.5050 (0.2588) 0.6124 (0.4977) 0.4881 (0.3133) 0.4750 (0.2500)

15 1 2 0.1385 (0.0192) 0.3135 (0.1448) 0.3592 (0.1754) 0.1836 (0.0582)
3 0.2929 (0.0858) 0.6282 (0.4800) 0.5743 (0.3790) 0.5162 (0.2846)

2 2 0.2744 (0.0761) 0.3205 (0.1529) 0.4573 (0.2766) 0.1917 (0.0624)
3 0.4754 (0.2285) 0.5746 (0.4355) 0.4393 (0.2647) 0.4532 (0.2297)

30 15 1 2 0.1368 (0.0187) 0.3105 (0.1425) 0.3640 (0.1798) 0.1852 (0.0569)
3 0.2784 (0.0775) 0.6096 (0.4530) 0.5449 (0.3454) 0.4985 (0.2672)

2 2 0.2756 (0.0769) 0.3409 (0.1706) 0.4678 (0.2867) 0.1927 (0.0646)
3 0.4791 (0.2320) 0.5957 (0.4620) 0.4363 (0.2635) 0.4557 (0.2320)

23 1 2 0.1083 (0.0117) 0.2858 (0.1192) 0.3621 (0.1845) 0.1955 (0.0580)
3 0.2121 (0.0450) 0.4848 (0.2915) 0.4007 (0.2021) 0.4074 (0.1863)

2 2 0.2266 (0.0517) 0.2863 (0.1240) 0.4167 (0.2496) 0.1969 (0.0604)
3 0.3930 (0.1555) 0.4419 (0.2707) 0.2663 (0.1226) 0.3570 (0.1534)

60 30 15 1 2 0.1336 (0.0179) 0.2958 (0.1257) 0.3487 (0.1709) 0.1839 (0.0526)
3 0.2697 (0.0727) 0.5436 (0.3627) 0.4636 (0.2622) 0.4533 (0.2258)

2 2 0.2738 (0.0756) 0.3107 (0.1400) 0.4264 (0.2534) 0.1951 (0.0602)
3 0.4919 (0.2440) 0.5798 (0.4366) 0.3996 (0.2310) 0.4354 (0.2141)
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23 1 2 0.1296 (0.0168) 0.2800 (0.1124) 0.3400 (0.1633) 0.1779 (0.0495)
3 0.2697 (0.0727) 0.5510 (0.3690) 0.4636 (0.2591) 0.4541 (0.2252)

2 2 0.2708 (0.0740) 0.3154 (0.1444) 0.4334 (0.2574) 0.1958 (0.0615)
3 0.4737 (0.2262) 0.5622 (0.4106) 0.3672 (0.2047) 0.4187 (0.2009)

45 23 1 2 0.1356 (0.0184) 0.2964 (0.1278) 0.3642 (0.1803) 0.1926 (0.0619)
3 0.2784 (0.0775) 0.5627 (0.3880) 0.4867 (0.2855) 0.4687 (0.2400)

2 2 0.2718 (0.0744) 0.2983 (0.1308) 0.4318 (0.2629) 0.1870 (0.0557)
3 0.4734 (0.2259) 0.5613 (0.4096) 0.3723 (0.2034) 0.4220 (0.2021)

34 1 2 0.1093 (0.0119) 0.2560 (0.0964) 0.3286 (0.1559) 0.1798 (0.0489)
3 0.2143 (0.0459) 0.4467 (0.2500) 0.3383 (0.1470) 0.3689 (0.1540)

2 2 0.2283 (0.0524) 0.2591 (0.0984) 0.3663 (0.2110) 0.1780 (0.0474)
3 0.3955 (0.1572) 0.4233 (0.2533) 0.2497 (0.1165) 0.3368 (0.1440)

Table 6: The Average bias  (ABS)  and the Mean Squared Errors  (MSEs) in
parentheses for the parameter  using Adams and Bayes methods with

m =  (n/2 & 3n/4) and k= (m/2 and 3m/4) at T = 1.5

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations

20 10 5 1 2 0.0976 (0.0096) 0.3548 (0.1769) 0.3568 (0.1712) 0.1840 (0.0561)
3 0.1716 (0.0296) 0.6047 (0.4438) 0.5697 (0.3720) 0.5043 (0.2722)

2 2 0.2047 (0.0426) 0.3495 (0.1792) 0.5174 (0.3461) 0.1932 (0.0635)
3 0.3370 (0.1157) 0.5407 (0.4096) 0.4154 (0.2412) 0.4536 (0.2310)

8 1 2 0.0977 (0.0096) 0.3300 (0.1576) 0.3677 (0.1774) 0.1746 (0.0527)
3 0.1722 (0.0298) 0.6235 (0.4697) 0.5659 (0.3653) 0.5029 (0.2700)

2 2 0.2036 (0.0421) 0.3589 (0.1818) 0.4909 (0.3198) 0.1973 (0.0644)
3 0.3376 (0.1159) 0.5335 (0.3915) 0.3964 (0.2244) 0.4428 (0.2195)

15 8 1 2 0.0906 (0.0082) 0.3199 (0.1485) 0.3838 (0.1973) 0.1956 (0.0605)
3 0.1654 (0.0274) 0.6017 (0.4453) 0.5368 (0.3355) 0.4871 (0.2565)

2 2 0.1975 (0.0396) 0.3585 (0.1858) 0.5026 (0.3333) 0.1969 (0.0648)
3 0.3258 (0.1079) 0.4892 (0.3471) 0.3697 (0.2047) 0.4257 (0.2073)

11 1 2 0.0901 (0.0081) 0.3215 (0.1491) 0.3830 (0.1948) 0.1937 (0.0602)
3 0.1595 (0.0255) 0.5595 (0.3864) 0.4924 (0.2894) 0.4601 (0.2314)

2 2 0.1934 (0.0379) 0.3375 (0.1684) 0.4857 (0.3239) 0.1990 (0.0636)
3 0.3202 (0.1041) 0.4793 (0.3372) 0.3397 (0.1864) 0.4126 (0.1990)

40 20 10 1 2 0.0974 (0.0095) 0.2980 (0.1286) 0.3639 (0.1825) 0.1888 (0.0564)
3 0.1717 (0.0295) 0.5423 (0.3605) 0.4585 (0.2523) 0.4460 (0.2176)

2 2 0.2028 (0.0415) 0.3066 (0.1403) 0.4452 (0.2768) 0.1984 (0.0633)
3 0.3372 (0.1147) 0.5088 (0.3544) 0.3227 (0.1660) 0.3980 (0.1854)

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations
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15 1 2 0.0973 (0.0095) 0.2871 (0.1208) 0.3642 (0.1806) 0.1813 (0.0525)
3 0.1716 (0.0295) 0.5414 (0.3601) 0.4684 (0.2664) 0.4517 (0.2250)

2 2 0.2028 (0.0415) 0.2966 (0.1294) 0.4366 (0.2685) 0.1916 (0.0587)
3 0.3352 (0.1133) 0.4871 (0.3283) 0.3115 (0.1575) 0.3888 (0.1769)

30 15 1 2 0.0923 (0.0085) 0.2731 (0.1084) 0.3536 (0.1754) 0.1816 (0.0517)
3 0.1647 (0.0272) 0.5114 (0.3260) 0.4244 (0.2234) 0.4240 (0.2006)

2 2 0.1966 (0.0389) 0.2945 (0.1261) 0.4311 (0.2666) 0.1903 (0.0545)
3 0.3269 (0.1077) 0.4652 (0.3039) 0.2892 (0.1451) 0.3737 (0.1686)

23 1 2 0.0901 (0.0081) 0.2835 (0.1149) 0.3514 (0.1760) 0.1953 (0.0582)
3 0.1588 (0.0253) 0.4820 (0.2965) 0.3829 (0.1859) 0.3961 (0.1771)

2 2 0.1908 (0.0366) 0.2723 (0.1128) 0.3963 (0.2359) 0.1831 (0.0521)
3 0.3164 (0.1009) 0.4134 (0.2521) 0.2475 (0.1135) 0.3402 (0.1437)

60 30 15 1 2 0.0976 (0.0095) 0.2735 (0.1083) 0.3458 (0.1693) 0.1883 (0.0543)
3 0.1723 (0.0297) 0.4944 (0.3059) 0.3841 (0.1869) 0.4015 (0.1806)

2 2 0.2031 (0.0415) 0.2703 (0.1080) 0.4011 (0.2349) 0.1833 (0.0520)
3 0.3352 (0.1130) 0.4599 (0.2855) 0.2708 (0.1288) 0.3590 (0.1554)

23 1 2 0.0975 (0.0095) 0.2658 (0.1053) 0.3345 (0.1637) 0.1827 (0.0511)
3 0.1723 (0.0297) 0.5068 (0.3203) 0.4010 (0.2014) 0.4131 (0.1908)

2 2 0.2035 (0.0416) 0.2834 (0.1164) 0.3857 (0.2218) 0.1871 (0.0556)
3 0.3351 (0.1130) 0.4547 (0.2800) 0.2625 (0.1186) 0.3526 (0.1488)

45 23 1 2 0.0898 (0.0081) 0.2398 (0.0873) 0.3015 (0.1360) 0.1729 (0.0466)
3 0.1610 (0.0260) 0.4409 (0.2473) 0.3348 (0.1460) 0.3665 (0.1530)

2 2 0.1935 (0.0376) 0.2521 (0.0929) 0.3483 (0.1898) 0.1746 (0.0466)
3 0.3208 (0.1034) 0.4141 (0.2405) 0.2398 (0.1088) 0.3300 (0.1383)

34 1 2 0.0899 (0.0081) 0.2424 (0.0876) 0.3220 (0.1536) 0.1750 (0.0471)
3 0.1591 (0.0253) 0.4323 (0.2358) 0.3291 (0.1444) 0.3621 (0.1512)

2 2 0.1917 (0.0369) 0.2489 (0.0924) 0.3483 (0.1892) 0.1750 (0.0474)
3 0.3175 (0.1014) 0.3953 (0.2256) 0.2256 (0.0914) 0.3172 (0.1271)

Bayes Estimations

N m k � � Adams Chara-Prior Gamma Prior Kernel Prior
Estimations


